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1 OpenMS Terms

1.1 Mass spectrometry terms

The following terms for MS-related data are used in this tutorial and the OpenMS class documentation:

* raw data point
An unprocessed data point as measured by the instrument.

* peak
Data point that is the result of some kind of peak detection algorithm. Peaks are often referred to as
sticksor centroided dataas well.
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Figure 1: Part of a raw spectrum (blue) with three peaks (red)

* map
A collection of spectra generated by a HPLC-MS experiment. Depending on what kinds of spec-
tra are contained, we use the termasv mapor peak map Often a map is also referred to as an
experiment

« feature
The signal caused by a chemical entity detected in an HPLC-MS experiment, typically a peptide.
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Figure 2: Peak map with a marked feature (red)
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2 OpenMS Tutorial

This tutorial gives an introduction to the OpenMS core datastructures and algorithms. It is intended to
allow for a quick start in writing your own applications based on the OpenMS framework.

The structure of this tutorial is similar to the modules of the class documentation. First, the basic concepts
and datastructures of OpenMS are explained. The next chapter is about the kernel datastructures. These
datastructures represent the actual mass spectronomy data: raw data, peaks, spectra and maps. In the
following chapters, the more sophisticated datastructures and algorithms, e.g. those used for peak picking,
feature finding and protein/peptide identification are presented.

All the example programs used in this tutorial, can be foun@genMS/source/EXAMPLES/
If you are looking for C++ literature, we recommend the following books:
o C++:

C++ Primer
Effective C++

e STL:
Generic Programming and the STL
Effective STL

e Qt:
C++ GUI Programming with Qt 4
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2.1 OpenMS concepts
This chapter covers some very basic concepts needed to understand OpenMS code. It describes OpenMS

primitive types, namespaces, exceptions and important preprocessor macros. The classes described in this
section can be found in tttONCEPTfolder.

2.1.1 Basic data types

OpenMS has its own names for the C++ primitive types. The integer types of OpenMi& &rg) and
Ulnt (unsigned int). For floating point numbeReal(float) andDoubleRealdouble) are used.

These and more types are define@ipenMS/CONCEPT/Types.h
2.1.2 The OpenMS namespace

The main classes of OpenMS are implemented in the namegppeaeMS There are several sub-
namespaces to ti@penMShamespace. The most important ones are:

OpenMS::Constantsontains nature constants.

OpenMS::Mathcontains math functions and classes.

OpenMS::Exceptiogontains the OpenMS exceptions.

OpenMS::Internakontains certain auxiliary classes that are typically used by only one class of the
OpenMShamespace and not by the user directly.

There are several more namespaces. For a detailed description have a look at the class documentation.

2.1.3 Exception handling in OpenMS

All exceptions are defined in the namesp&@menMS::ExceptionThe Base class for all OpenMS excep-
tions isBase This base class provides three members for storing the source file, the line number and the
function name where the exception occurred. All derived exceptions provide a constructor that takes at
least these arguments. The following code snippet shows the handling of an index overflow:

void someMethod(UInt index) throw (Exception::IndexOverflow)
if (index >= size())

throw Exception::IndexOverflow(_ FILE_ , _ LINE__, _ PRETTY_FUNCTION__, index, size()-1);
}

/Il do something

h

Note the first three arguments given to the constructoEILE___and__ LINE__are built-in preprocessor
macros that hold the file name and the line numbe®RETTY_FUNCTION _is replaced by the GNU

g++ compiler with the demangled name of the current function (including the class name and argument
types). For other compilers it is defined asuhknown>". For an index overflow exception, there are two
further arguments: the invalid index and the maximum allowed index.

The file name, line number and function name are very useful in debugging. However, OpenMS also

implements its own exception handler which allows to turn each uncaught exception into a segmentation
fault. This mechanism allows developers to trace the source of an exception with a debugger. To use this
feature, set the environment varia@®ENMS_DUMP_CORE
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2.1.4 Condition macros

In order to enforce algorithmic invariants, the two preprocessor m&zrRENMS PRECONDITIONNd
OPENMS_POSTCONDITIOHre provided. These macros are enabled only if debug info is enabled and
optimization is disabled iconfigure Otherwise they are removed by the preprocessor, so they won't cost
any performance.

The macros throw Exception::Precondition or Exception::Postcondition respectively if the condition fails.
The example from sectioBxception handling in OpenM&ould have been implemented like that:

void someMethod(UInt index)

OPENMS_PRECONDITION(index < size(),"Precondition not met!");
/ldo something

j#
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2.2 Auxiliary datastructures

This section contains a short introduction to three datastructures you will definitely need when program-
ming with OpenMS. The datastructures module of the class documentation contains many more classes,
which are not mentioned here in detail. The classes described in this section can be fourdAnAts
TRUCTURESolder.

2.2.1 The OpenMS string implementation

The OpenMS string implementati@iringis based on the STktd::string In order to make the OpenMS
string class more convenient, a lot of methods have been implemented in addition to the methods provided
by the base class. A selection of the added functionaliy is given here:

Checking for a substring (suffix, prefix, substring, char)

Extracting a substring (suffix, prefix, substring)
» Trimming (left, right, both sides)
« Concatenation of string and other primitive types vdgtierator+

« Construction from QString and conversion to QString

2.2.2 D-dimensional coordinates

Many OpenMS classes, especially the kernel classes, need to store some kind of d-dimensional coordinates.
The template clasBPositionis used for that purpose. The interface of DPosition is pretty straightforward.

The operator[] is used to access the coordinate of the different dimensions. The dimensionality is stored
in the enum valueDIMENSION The following example (Tutorial_DPosition.C) shows how to print a
DPosition to the standard output stream.

First we need to include the header file @Positionandiostream Then we import all the OpenMS
symbols to the scope with thesingdirective.

#include <OpenMS/DATASTRUCTURES/DPosition.h>
#include <iostream>

using namespace OpenMsS;

The first commands in the main method initialize a 2-dimensibiasition:

Int main()

{
DPosition<2> pos;
pos[0] = 8.15;
pos[l] = 47.11,;

Finally we print the content of the DPosition to the standard output stream:

for (UInt i = O; i < DPosition<2>::DIMENSION; ++i)
{

}

return O;
/lend of main

std::cout << "Dimension " << i << "I "<< pos[i] << std::endl;

-
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The output of our first little OpenMS program is the following:

Dimension 0: 8.15
Dimension 1: 47.11

2.2.3 D-dimensional ranges

Another important datastructure we need to look at in detdilRange It defines a d-dimensional, half-
open interval through its twBPositionmembers. These members are accessed hyitheandmaxmeth-
ods and can be set by tketMinandsetMaxmethods.

DRange maintains the invariant thatn is geometrically less or equal toax i.e. min()[z] < max()[z]
for each dimension. The following example (Tutorial DRange.C) demonstrates this behavior.

This time, we skip everything before the main method. In the main method, we create a range and assign
values tominandmax Note that the the minimum value of the first dimension is larger than the maximum
value.

Int main()

DRange<2> range;
range.setMin( DPosition<2>(2.0, 3.0) );
range.setMax( DPosition<2>(1.0, 5.0) );

Then we print the content snge:

for (UInt i = 0; i < DRange<2>::DIMENSION; ++i)
{

std::cout << "min " << i << " "<< range.min()[i] << std::endl;
std::icout << "max " << i << " "<< range.max()[i] << std:endl;

}

return O;
} /lend of main

The output is:

min 0: 1
max 0: 1
min 1: 3
max 1. 5

As you can see, the minimum value of dimension one was adjusted in order to make the maxithum of
conform with the invariant.

DintervalBaseis the closed interval counterpart (and base clas§)Rédinge Another class derived from
DintervalBaseis DBoundingBox It also represents a closed interval, but differs in the methods. Please
have a look at the class documentation for details.
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2.3 The kernel classes

The OpenMS kernel contains the datastructures that store the actual MS data, i.e. raw data points, peaks,
features, spectra, maps. The classes described in this section can be fourkkERMIELfolder.

2.3.1 Raw data point, Peak, Feature, ...

In general, there are three types of data points: raw data points, peaks and picked peaks. Raw data points
provide members to store position (mass-to-charge ratio, retention time, ...) and intensity. Peaks are derived
from raw data points and add an interface to store meta information. Picked peaks are derived from peaks
and have additional members for peak shape information: charge, width, signal-to-noise ratio and many
more.

The kernel data points exist in three versions: one-dimensional, two-dimensional and d-dimensional.

| RawDataPoint1 D | |Metalnf0|nterrace| | RawDataPointzDr | | Metalnfolnte face | |DRawDataF'0int< n] >| | Metalnfolnteface |

f

DPeak= D =

Figure 3: Data structures for MS data points

one-dimensional data points

The one-dimensional data points are most important, the two-dimensional and d-dimensional data
points are needed rarely. The base class of the one-dimensional data p&iatsDataPoint1D It
provides members to store the mass-to-charge rgéitMZ andsetM2) and the intensitydetintensity
andsetlintensity.

Peak1Dis derived fromRawDataPoint1lDand adds an interface for metadata (sesalnfo).

PickedPeak1Ds derived fromPeakl1Dand adds information about the peak shape.

two-dimensional data points

The two-dimensional data points are needed when geometry algorithms are applied to the data points.
A special case is thEeatureclass, which needs a two-dimensional position (m/z and RT).

The base class of the two-dimensional data poinRaigDataPoint2DIt provides the same interface
asRawDataPoint1Dand additional members for the retention tingetRTandsetR7).

Peak2Dis derived fromRawDataPoint2Dand adds an interface for metadata.

Featureis derived fromPeak2Dand adds information about the convex hull of the feature, fitting
guality and so on.

d-dimensional data points

The d-dimensional data points are needed only in special cases, e.g. in template classes that must
operate on any number of dimensions.

The base class of the d-dimensional data poindRawDataPoint The methods to access the position
aregetPositionandsetPosition

Note that the one-dimensional and two-dimensional data points also have the nggtimstionrand
setPosition They are needed in order to be able to write algorithms that can operate on all data point
types. It is, however, recommended not to use these members unless you really write such a generic
algorithm.
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2.3.2 Spectra

one-dimensional spectrum

The most important container for raw data and peakd$Spectrumlt is a template class that takes
the peak type as template argument. The default peak tyipeaislD Possible other peak types are
classes derived frolRawDataPoint1Dor classes providing the same interface.

MSSpectruns derived from two base classd3Spectruma generic container for d-dimensional peak
data, and fronSpectrumSettings container for the meta data of a spectrum. Here, only MS data
handling is explainedspectrumSettings described in sectiokleta data of a spectrum

d-dimensional spectrum

The base class diSSpectruns DSpectrum This class provides a generic container for d-dimensional
data. One of the template argument&pectrums the Container the data is stored in. As container
DPeakArray or a container with the same interface is usB&eakArrayis a vector of data points
with a more convenient interface for sorting the data.

The peak container can be accessed througlgeb@ontainer(Jmethod. For convenience, part of the
container interface is also provided Byspectrum

In the following example (Tutorial_ MSSpectrum.C) prograniM&Spectrunis filled with peaks, sorted
according to mass-to-charge ratio and a selection of peak positions is displayed.

First we create a spectrum and insert peaks with descending mass-to-charge ratios:

Int main()

{

MSSpectrum<> spectrum;
PeaklD peak;

for (Real mz=1500.0; mz>=500; mz-=100.0)

peak.setMZ(mz);
spectrum.push_back(peak);

}

Then we sort the peaks according to ascending mass-to-charge ratio. As the method used for sorting is not
wrapped byDSpectrumwe need to access the container to sort it.

spectrum.getContainer().sortByPosition();

Finally we print the peak positions of those peaks between 800 and 1000 Thomson. For printing all the
peaks in the spectrum, we simply would have used the STL-conform meblegdy)andend()

MSSpectrum<>::lterator it;
for(it=spectrum.MZBegin(800.0); it!l=spectrum.MZEnd(1000.0); ++it)
{

cout << it->getMZ() << endl;

}

return 0O;
} /lend of main

Typedefs
For convenience, the following type definitions are define@penMS/KERNEL/StandardTypes.h

typedef MSSpectrum<PeaklD> PeakSpectrum;
typedef MSSpectrum<RawDataPointlD> RawSpectrum;

Generated on Tue Apr 1 15:37:41 2008 by Doxygen



2.3 The kernel classes 11

2.3.3 Maps

Although raw data maps, peak maps and feature maps are conceptually very similar. They are stored in
different data types. For raw data and peak maps, the default contaiSEgperimentwhich is an

array ofMSSpectruninstances. Just adSSpectrunit is a template class with the peak type as template
parameter.

In contrast to raw data and peak maps, feature maps are no collection of one-dimensional spectra, but an
array of two-dimensiondfeatureinstances. The main datastructure for feature maps is dadiaidireMap

Although MSExperimenaind FeatureMapdiffer in the data they store, they also have things in common.
Both store meta data that is valid for the whole map, i.e. sample description and instrument description.
This data is stored in the common base clasgerimentalSettings

MSExperiment

The following figure shows the big picture of the kernel datastructuMSExperimenis derived

from ExperimentalSettinggneta data of the experiment) and framacto MSSpectrums. The one-
dimensional spectrunviSSpectrunis derived from SpectrumSettings (meta data of a spectrum) and
from DSpectrurs: 1>, which stores the actual peak data iDBeakArray

Since DPeakArray can store all types of peaks derived fRawDataPoint all the data containers

are template classes that take the peak type as template argument. This is omitted in the diagram for
simplicity.

MSExperiment ExperimentalSettings

}

»

SpectrumSettings

MSSpectrum

[~ DSpectrum<1=

p

1

DPeakArray

y

»

RawDataPoint1D
or Peak1D

Figure 4: Overview of the main kernel datastructures

Typedefs

For convenience, the following map types are defineOpenMS/KERNEL/StandardTypes.h
typedef MSExperiment<Peakl1lD> PeakMap;
typedef MSExperiment<RawDataPointlD> RawMap;

The following example program (Tutorial_MSExperiment.C) creatddSExperimentontaining four
MSSpectrunnstances. Then it iterates over an area and prints the peak positions in the area:

First we create the spectra in a for-loop and set the retention time and MS level. Survey scans have a MS
level of 1, MS/MS scans would have a MS level of 2, and so on.

Generated on Tue Apr 1 15:37:41 2008 by Doxygen



2.3 The kernel classes 12

Int main()
PeakMap exp;
for (Uint i=0; i<4; ++i)

PeakSpectrum spectrum;
spectrum.setRT(i);
spectrum.setMSLevel(1);

Then we fill each spectrum with several peaks. As all spectra would have the same peaks otherwise, we
add the retention time to the mass-to-charge ratio of each peak.

for (Real mz=500.0; mz<=900; mz+=100.0)

PeaklD peak;
peak.setMZ(mz+i);
spectrum.push_back(peak);

exp.push_back(spectrum);
} /lend of creation

Finally, we iterate over the RT range (2,3) and the m/z range (603,802) and print the peak positions.

for(PeakMap::Arealterator it=exp.areaBegin(2.0, 3.0, 603.0, 802.0); it!l=exp.areaEnd(); ++it)
{

cout << it.getRT() << " - " << it->getMZ() << endl;
}

The output of this loop is:

- 702
- 802
603
- 703

W wN N
'

For printing all the peaks in the experiment, we could have used the STL-iterators of the experiment to
iterate over the spectra and the STL-iterators of the spectra to iterate over the peaks:
for(PeakMap::lterator s_it=exp.begin(); s_itl=exp.end(); ++s_it)

for (PeakSpectrum::lterator p_it=s_it->begin(); p_itl=s_it->end(); ++p_it)

{

}
}

cout << s_jt->getRT() << " - " << p_it->getMZ() << endl;

return O;
} /lend of main

FeatureMap

FeatureMap the container for features, is simplywactor Feature>. Additionally, it is derived from
ExperimentalSettingso store the meta information. Just liMSExperimentit is a template class. It
takes the feature type as template argument.

The following example (Tutorial_FeatureMap.C) shows how to insert two features into a map and iterate
over the features.
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Int main()

{

FeatureMap<> map;

Feature feature;

feature.setRT(15.0);

feature.setMZ(571.3);
map.push_back(feature); //append feature 1
feature.setRT(23.3);

feature.setMZ(1311.3);
map.push_back(feature); //append feature 2

for (FeatureMap<>:lterator it=map.begin(); it'=map.end(); ++it)

{
cout << jt->getRT() << " - " << it->getMZ() << endl;

}

return O;
} /lend of main

RangeManager

All peak and feature container®$pectrum MSExperiment FeatureMap are also derived from
RangeManager This class facilitates the handling of MS data ranges. It allows to calculate and
store both the position range and the intensity range of the container.

The following example (Tutorial_RangeManager.C) shows the functionality of the BlasgeManger
using aFeatureMap First aFeatureMapwith two features is created, then the ranges are calulated and
printed:

Int main()

{

FeatureMap<> map;

Feature feature;
feature.setintensity(461.3);
feature.setRT(15.0);
feature.setMZ(571.3);
map.push_back(feature);
feature.setintensity(12213.5);
feature.setRT(23.3);
feature.setMZ(1311.3);
map.push_back(feature);

/[calculate the ranges
map.updateRanges();

cout << "Int: " << map.getMinint() << " - " << map.getMaxInt() << endl;

cout << "RT: " << map.getMin()[0] << " - " << map.getMax()[0] << endl;
cout << "m/z: " << map.getMin()[1] << " - " << map.getMax()[1] << endl;
return O;

} /lend of main

The output of this program is:

Int: 461.3 - 122135
RT: 15 - 23.3
m/z: 571.3 - 1311.3
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2.4 How meta data is stored

The meta informations about an HPLC-MS experiment are stor&dperimentalSettingand Spectrum-
Settings All information that is not covered by these classes can be stored in the type-name-value datas-
tructureMetalnfa All classes described in this section can be found irMET ADATAfolder.

2.4.1 Metalnfo

DataValueis a data structure that can store any numerical or string information. It also supports casting of
the stored value back to its original type.

Metalnfois used to easily store information of any type, that does not fit into the the other classes. It imple-
ments type-name-value triplets. The main datastructure is an associative container thdatmvakie
instances as values associated to string keys. Internally, the string keys are converted to integer keys for
performance resaons i.enap<UInt,DataValue- is used.

TheMetalnfoRegistnassociates the string keys usediataValuewith the integer values that are used for
internal storage. TheletalnfoRegistrys a singleton.

If you want a class to haveMetalnfomember, simply derive it frorivletalnfolnterface This class provides
aMetalnfomember and the interface to access it.

Metalnfolnterface

;
1

Metalnfo MetalnfoRegistry

3

-

DataValue

Figure 5: The classes involved in meta information storage

The following example (Tutorial_Metalnfo.C) shows how to Wdetadata We can simply set values

for the string keys, andetMetaValuaegisters these names automatically. In order to access the val-
ues, we can either use the registered name or the index of the namegetMetaValuemethod returns

a DataValue which has to be casted to the right type. If you do not know the type, you can use the
DataValue::valueType(nethod.

Int main()
Metalnfolnterface info;

/linsert meta data
info.setMetaValue("color",String("#ff0000"));
info.setMetaValue("id",112131415);

/laccess id by index

Ulnt id_index = info.metaRegistry().getindex("id");

cout << "id : " << (UInt)(info.getMetaValue(id_index)) << endl;
/laccess color by name

cout << "color: " << (String)(info.getMetaValue("color")) << endl;

return O;
} /lend of main
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2.4.2 Meta data of a map

This class holds meta information about the experiment that is valid for the whole experiment:

* protein identifications
 preprocessing performed on the data
¢ MS instrument

* source file

* contact person

» sample description

* instrument software

e HPLC settings

ExperimentalSettings:
Metalnfolnterface

3

Proteinldentification: - ProteinHit;
Metalnfolnterface Metalnfolnterface

[

ProcessingMethod: lonSource:
Metalnfolnterface Metalnfolnterface
Instrument: " * MassAnalyzer:
Metalnfolnterface ¢ Metalnfolnterface
SourceFile lonDetector:
Metalnfolnterface

* ContactPerson:
Metalnfolnterface
m Digestion
Sample: " * SampleTreatment:
Metalnfolnterface ¢ Metalnfolnterface
Modification
Software T
Tagging
HPLC o Gradient

Figure 6: Map meta information

2.4.3 Meta data of a spectrum
This class contains meta information about settings specific to one spectrum:

* spectrum-specific instrument settings
 peptide and protein identifications

« precursor information (of MS/MS spectra)
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« description of theMetalnfopresent for each data point

« information on the acquisition

SpectrumSettings

InstrumentSettings:
Metalnfolnterface

Peptideldentification:
Metalnfolnterface

[

*

PeptideHit:
Metalnfolnterface

Precursor:
Metalnfolnterface

MetalnfoDescription: SourceFile
Metalnfolnterface
Aquisitioninfo * Aquisition:

Metalnfolnterface

Figure 7: Spectrum meta information
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2.5 File and DB access

All classes for file and database IO can be found inREE&RMAT folder.

2.5.1 File adapter classes

The interface of most file adapter classes is very similar. They implemeatand astoremethod, that
take a file name and the appropriate data structure.

The following example (Tutorial_FilelO.C) demonstrates the uddaidataFileandMzXMLFileto convert
one format into another usingSExperimento hold the temporary data:

Int main()

{

MzXMLFile mzxml;
MzDataFile mzdata;

/I temporary data storage
MSExperiment<RawDataPoint1D> map;

/I convert MzXML to MzData
mzxml.load("Tutorial_FilelO.mzXML",map);
mzdata.store("Tutorial_FilelO.mzData",map);

return 0O;
} /lend of main

FileHandler

In order to make the handling of different file types easier, the éldsBlandlercan be used. It loads
a file into the appropriate data structure independently of the file type. The file type is determined from
the file extension or the file contents:

MSExperiment<> in;

FileHandler handler();
handler.loadExperiment("input.mzData",in);

2.5.2 DB access

For database access, the clB&Adapteris used. As its interface is very similar to the interface of the file
adapters, no example is shown here.

2.5.3 PeakFileOptions

In order to have more control over loading data from files or databases, most adapters can be configured
usingPeakFileOptionsThe following options are available:

« only a specific retention time range is loaded

« only a specific mass-to.charge ratio range is loaded
« only a specific intensity range is loaded

 only spectra with a given MS level are loaded

« only meta data of the whole experiment is loadEgferimentalSettings
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2.5.4 Param

Most algorithms of OpenMS and some of the TOPP tools have many parameters. The parameters are stored
in instances oParam This class is similar to a Windows INI files. The actual parameters (type, name and
value) are stored in sections. Sections can contain parameters and sub-sections, which leads to a tree-like
structure. The values are storeddataValue but Paramsupports only the typestring, int andfloat

Parameter names are given as a string including the sections and subsections in which "’ is used as a
delimiter.

The following example (Tutorial_Param.C) shows how a file description is given.

Int main()

{

Param param;

param.setValue("file:name","test.xml");
param.setValue("file:size(MB)",572.3);
param.setValue("file:data:min_int",0);
param.setValue("file:data:max_int",16459);

cout << "Name 1 " << (String)(param.getValue("file:name")) << endl;
cout << "Size : " << (Real)(param.getValue(“file:size(MB)")) << endl;
cout << "Min int: " << (Ulnt)(param.getValue("file:data:min_int")) << endl;
cout << "Max int: " << (Ulnt)(param.getValue("file:data:max_int")) << endl;

return O;
} /lend of main
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2.6 Signal processing

OpenMS offers several filters for the reduction of noise and baseline which disturb LC-MS measurements.
These filters work spectra-wise and can therefore be applied to a whole raw data map as well as to a single
raw spectrum. All filters offer functions for the filtering of raw data containers @agvSpectruin‘filter"

as well as functions for the processing of a collection of raw data containerdR@awgMay) "filterExper-

iment". The functions "filter" and "filterExperiment" can both be invoked with an input container along
with an output container or with iterators that define a range on the input container along with an output
container. The classes described in this section can be found HlthERINGfolder.

2.6.1 Baseline filters

Baseline reduction can be perfomed by TlopHatFilter. The top-hat filter is a morphological filter which

uses the basic morphological operations "erosion” and "dilatation” to remove the baseline in raw data.
Because both operations are implemented as described by Van Herk the top-hat filter expects equally spaced
raw data points. If your data is not uniform yet, please usé.ihearResampleto generate equally spaced

data.

TheTopHatFilterremoves signal structures in the raw data which are broader than the size of the structuring
element.

The following example (Tutorial_TopHatFilter.C) shows how to instantiate a tophat filter, set the length of
the structuring element and remove the base line in a raw LC-MS map.

Int main()

{
RawMap exp_raw;
RawMap exp_filtered,;

MzDataFile mzdata_file;
mzdata_file.load("../TEST/data/PeakPicker_test.mzData",exp_raw);

TopHatFilter th;

Param param;
param.setValue("struc_elem_length",1.0);
th.setParameters(param);
th.filterExperiment(exp_raw,exp_filtered);

return O;
} /lend of main

Note:

In order to remove the baseline, the width of the structuring element should be greater than the width
of a peak.

2.6.2 Smoothing filters

We offer two smoothing filters to reduce noise in LC-MS measurements.

2.6.2.1 Gaussian filter The classGaussFilteris a gaussian filter. The wider the kernel width, the
smoother the signal (the more detail information gets lost).

We show in the following example (Tutorial_GaussFilter.C) how to smooth a raw data map. The gaussian
kernel width is set to 1 m/z.
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Int main()

{
RawMap exp_raw;
RawMap exp_filtered;

MzDataFile mzdata_file;
mzdata_file.load("../TEST/data/PeakPicker_test.mzData",exp_raw);

GaussFilter g;

Param param;
param.setValue("gaussian_width",1.0);
g.setParameters(param);

g.filterExperiment(exp_raw,exp_filtered);

return 0O;
} /lend of main

Note:

Use a gaussian filter kernel which has approximately the same width as your mass peaks.

2.6.2.2 Savitzky Golay filter The Savitzky Golay filter is implemented in two wagavitzkyGo-
laySVDFilter and SavitzkyGolayQRFilter Both filters come to the same result but in most cases the
SavitzkyGolaySVDFiltehas a better run time. The Savitzky Golay filter works only on equally spaced
data. If your data is not uniform use thenearResampleto generate equally spaced data. The smoothing
degree depends on two parameters: the frame size and the order of the polynomial used for smoothing. The
frame size corresponds to the number of filter coefficients, so the width of the smoothing interval is given
by frame_sizespacing of the raw data. The bigger the frame size or the smaller the order, the smoother
the signal (the more detail information gets lost!).

The following example (Tutorial_SavitzkyGolayFilter.C) shows how to uSatzkyGolaySVDFiltgthe
SavitzkyGolayQRFiltehas the same interface) to smooth a single spectrum. The single raw data spectrum
is loaded and resampled to uniform data with a spacing of 0.01 /m/z. The frame size of the Savitzky Golay
filter is set to 21 data points and the polynomial order is set to 3. Afterwards the filter is applied to the
resampled spectrum.

Int main()

{
RawSpectrum spec_raw;
RawSpectrum spec_resampled;
RawSpectrum spec_filtered,;

DTAFile dta_file;
dta_file.load("../TEST/data/PeakTypeEstimator_rawTOF.dta",spec_raw);

LinearResampler Ir;

Param param_lr;
param_lIr.setValue("spacing",0.01);
Ir.setParameters(param_lIr);
Ir.raster(spec_raw,spec_resampled);

SavitzkyGolayFilter sg;

Param param_sg;
param_sg.setValue("frame_length",21);
param_sg.setValue("polynomial_order",3);
sg.setParameters(param_sg);
sg.filter(spec_resampled,spec_filtered);

return 0O;
} /lend of main
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2.6.3 Calibration

OpenMS offers methods for external and internal calibration of raw or peak data.

2.6.3.1 Internal Calibration The InternalCalibration uses reference masses for calibration. At least
two reference masses have to exist in each spectrum, otherwise it is not calibrated. The data to be calibrated
can be raw data or already picked data. If we have raw data, a peak picking step is necessary. For the
important peak picking parameters, have a look aRtbak pickingsection.

The following example (Tutorial_InternalCalibration.C) shows how to use the InternalCalibration for raw
data. First the data and reference masses are loaded.

Int main()

{

InternalCalibration ic;

RawMap exp_raw;

MzDataFile mzdata_file;
mzdata_file.load("../TEST/data/InternalCalibration_test.mzData",exp_raw);

std::vector<double> ref _masses;
ref_masses.push_back(1296.68476942);
ref_masses.push_back(2465.19833942);

Then we set the important peak picking parameters and run the internal calibration:

Param param;
param.setValue("PeakPicker:thresholds:peak_bound",800);
param.setValue("PeakPicker:thresholds:fwhm_bound",0.1);
param.setValue("PeakPicker:wavelet_transform:scale",0.12);
ic.setParameters(param);

ic.calibrate(exp_raw,ref_masses);

return O;
} /lend of main

2.6.3.2 TOF Calibration The TOFCalibration uses calibrant spectra to convert a spectrum containing
time-of-flight values into one with m/z values. For the calibrant spectra, the expected masses need to be
known as well as the calibration constants in order to convert the calibrant spectra tof into m/z (determined
by the instrument). Using the calibrant spectra’s tof and m/z-values, first a quadratic curve fitting is done.
The remaining error is estimated by a spline curve fitting. The quadratic function and the splines are used
to determine the calibration equation for the conversion of the experimental data.

The following example (Tutorial_TOFCalibration.C) shows how to use the TOFCalibration for raw data.
First the spectra and reference masses are loaded.

Int main()

{
TOFCalibration ec;
RawMap exp_raw,calib_exp;
MzDataFile mzdata_file;
mzdata_file.load("../TEST/data/TOFCalibration_test_calibrants.mzData",calib_exp);
mzdata_file.load("../TEST/data/TOFCalibration_test.mzData",exp_raw);

vector<DoubleReal> ref_masses;

TextFile ref_file;
ref_file.load("../TEST/data/TOFCalibration_test_calibrant_masses.txt",true);
for(TextFile::lterator iter = ref_file.begin(); iter != ref_file.end(); ++iter)

{
}

ref_masses.push_back(atof(iter->c_str()));
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Then we set the calibration constants for the calibrant spectra.

std::vector<DoubleReal> mi1;
mll.push_back(418327.924993827);

std::vector<DoubleReal> mi2;
ml2.push_back(253.645187196031);

std::vector<DoubleReal> mi3;
mi3.push_back(-0.0414243465397252);

ec.setML1s(mll);
ec.setML2s(ml2);
ec.setML3s(mI3);

Finally, we set the important peak picking parameters and run the external calibration:

Param param;
param.setValue("PeakPicker:thresholds:peak_bound",800);
param.setValue("PeakPicker:thresholds:fwhm_bound",0.1);
param.setValue("PeakPicker:wavelet_transform:scale",0.12);
ec.setParameters(param);
ec.calibrate(calib_exp,exp_raw,ref_masses);

return O;
} /lend of main
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2.7 Data reduction

Data reduction in LC-MS analysis mostly consists of two steps. In the first step, called "peak picking",
important information of the mass spectrometric peaks (e.g. peaks’ mass centroid positions, their areas
under curve and full-width-at-half-maxima) are extracted from the raw LC-MS data. The second data
reduction step, called "feature finding", represents the quantification of all peptides in a proteomic sample.
Therefore, the signals in a LC-MS map caused by all charge and isotopic variants of the peptide are detected
and summarized resulting in a list of compounds or features, each characterized by mass, retention time
and abundance. The classes described in this section can be found RANSFORMATION®Ider.

Figure 8: Part of an LC-MS map at different stages of data reduction. Axes depict retention time, m/z, and
intensity. From left to right raw data points, peak picked data points and a feature are shown.

2.7.1 Peak picking

For peak picking, the clag2eakPickerCWs used. Because this class detects and extracts mass spectro-
metric peaks it is applicable to LC-MS as well as MALDI raw data.

The following example (Tutorial_PeakPickerCWT.C) shows how to open a raw map (in mzData format),
initialize a PeakPickerCWT object, set the most important parameters (the scale of the wavelet, a peak’s
minimal height and fwhm), and start the peak picking process.

Int main()

{
RawMap exp_raw;
PeakMap exp_picked;

MzDataFile mzdata_file;
mzdata_file.load("../TEST/data/PeakPicker_test.mzData",exp_raw);

PeakPickerCWT pp;

Param param;
param.setValue("thresholds:peak_bound",500.0);
param.setValue("thresholds:fwhm_bound",0.1);
param.setValue("wavelet_transform:scale",0.2);
pp.setParameters(param);

pp.pickExperiment(exp_raw,exp_picked);
exp_picked.updateRanges();

cout << "Scale of the wavelet: " << (DoubleReal)param.getValue("wavelet_transform:scale")
<< "\nMinimal fwhm of a mass spectrometric peak: " << (DoubleReal)param.getValue("thresholds:fwhm_bound")
<< "\nMinimal intensity of a mass spectrometric peak " << (DoubleReal)param.getValue("thresholds:peak_bound")
<< "\n\nNumber of picked peaks " << exp_picked.getSize() << std::endl;
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return O;
} /lend of main

The output of the program is:

Scale of the wavelet: 0.2
Minimal fwhm of a mass spectrometric peak: 0.1
Minimal intensity of a mass spectrometric peak 500

Number of picked peaks 14

Note:

A rough standard value for the peak’s scale is the average fwhm of a mass spectrometric peak.

2.7.2 Peptide Quantification

The FeatureFinder implements algorithms for the detection and quantification of peptides from LC-MS
maps. In contrast to the previous step (peak picking), we do not only search for pronounced signals (peak)
in the LC-MS map but search explicitly for peptides which can be recognized by their isotopic pattern.

OpenMS offers different algorithms for this task.

Writing a FeatureFinder application of your own is straightforward to do. A short example (Tutorial_-
FeatureFinder.C) is given below. First we need to instantiate the FeatureFinder, its parameters and the
input/output data:

FeatureFinder ff;

I/l ... set parameters (e.g. from INI file)
Param parameters;

/I ... set input data (e.g. from mzData file)
MSExperiment<> input;

/I ... set output data structure

Then we run the FeatureFinder. The first argument is the algorithm name (here 'simple’). Using the second
and third parameter, the peak and feature data is handed to the algorithm. The fourth argument sets the
parameters used by the algorithm.

FeatureMap<> output;

ff.run("simple”, input, output, parameters);

Now the FeatureMap is filled with the found features.
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2.8 High-level data analysis

OpenMS offers a number of classes for high-level data analysis. This covers map alignment, pep-
tide/protein identification, clustering, etc. The classes described in this section can be foundNAthe
YSISfolder.

2.8.1 Map alignment

2.8.1.1 Pairwise map alignment The classPoseClusteringPairwiseMapMatchean be used to map

the element of one LC-MS map onto the elements of another LC-MS map. Corresponding elements of the
two maps are moved closer together and the retention time as well as the m/z dimensions of the two maps
become comparable. The transformation which maps one map onto the other is computed during the so
calledsuperposition phase

Superposition phasen the first step of the superpositon phase, an approximation of the transformation

is estimated which is used to determine reliable landmarks in the two maps. These landmarks enable in
the second step the evaluation of a more precise transformation. For both steps, different classes can be
chosen. Using th@oseClusteringSuperimposerAffiran affine transformation can be estimated and the
PoseClusteringSuperimposerSieitimates a transformation consisting of only a translation in rt and m/z.
Given a first approximation of the underlying warp, ®ienplePairFinderr the DelaunayPairFindercan

be used to determine landmarks in the two maps which represent potential corresponding elements. These
landmarks are used by tivapMatcherRegressiaim improve the inital transformation. The following ex-

ample (Tutorial_PairwiseAlignment.C) shows how to useRbgeClusteringPairwiseMapMatchand the
MapMatcherRegressidior the pairwise alignment of two maps. TReseClusteringPairwiseMapMatcher

is based on th@oseClusteringSuperimposerAffirmend aDelaunayPairFinder The initial as well as the

final transformation is stored in gridXML format.

We load two feature maps and instantiatBaseClusteringPairwiseMapMatchebject. ThePoseClus-
teringPairwiseMapMatchegets references to both maps an&axam object which defines the type of
transformation and pairfinder. Additionally, the valuenaZ_bucket_size is set, which represents the
maximum deviation in m/z of two corresponding elements.

Int main()

FeatureMap<> exp_feature_1;
FeatureMap<> exp_feature_2;

FeatureXMLFile featurexml_file;
featurexml_file.load("../TEST/TOPP/MapAlignmentFeatureMapl.xml",exp_feature_1);
featurexml_file.load("../TEST/TOPP/MapAlignmentFeatureMap2.xml",exp_feature_2);

Param param;
param.setValue("superimposer:type","poseclustering_affine");
param.setValue("superimposer:tuple_search:mz_bucket_size",0.3);
param.setValue("pairfinder:type","DelaunayPairFinder");

std::vector < ElementPair<Feature> > landmarks;
PoseClusteringPairwiseMapMatcher< FeatureMap<> > pcpm;
pcpm.setParameters(param);
pcpm.setElementMap(0,exp_feature_1);
pcpm.setElementMap(1,exp_feature_2);

pcpm.run();

The PoseClusteringPairwiseMapMatchedetermines a vector of element pairs and an initial estimate of
the transformation. We store this initial transformation under "FirstAffineTransformation.gridXML" and
pass the element pairs along with the initial transformationNMapMatcherobject.

GridFile grid_file;
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grid_file.store("FirstAffineTransformation.gridXML",pcpm.getGrid());

MapMatcherRegression< Feature > Ir;
Ir.setElementPairs(pcpm.getElementPairs());
Ir.setGrid(pcpm.getGrid());

Using these landmarks, an improved transformation is estimated and stored under "SecondAffineTransfor-
mation.gridXML"

Ir.estimateTransform();
grid_file.store("SecondAffineTransformation.gridXML",Ir.getGrid());

return 0O;
} /lend of main

Note:

The classVMiapDewarpercan be used to apply the transformation to the elements of a map.

2.8.1.2 Multiple map alignment The StarAlignmentclass performs a star-like progressive multiple
LC-MS map alignment based upon pairwise alignments as described above. Depending on the processing
state of the input maps, the output of a multiple alignment varies. Peak maps are iteratively mapped onto
one reference map and the result of the multiple peak map alignment are the dewarped maps themselves. In
case of multiple feature maps, corresponding elements in all maps are determined during the sorcalled
sensus phasand are combined to@onsensusMapsingDelaunayPairFinder TheStarAlignments able

to compute the alignment of multiple peak, feature, or consensus maps. It provides the warps of all maps
relative to the reference map as a result for the alignment of peak maps and compateeasusMaps

a result of a multiple feature, or consensus map alignment. The transformations can be stored in gridXML
format using theGridFile as mentioned in the example above and can be applied to the maps using the
MapDewarper The ConsensusMapan be stored in ConsensusXML usinGansensusXMLFile

2.8.2 Identification
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2.9 Chemistry

Especially for peptide/protein identification, a lot of data and data structures for chemical entities are
needed. OpenMS offers classes for elements, formulas, peptides, etc. The classes described in this section
can be found in th€HEMISTRYfolder.

2.9.1 Elements

There is a representation of Elements implemented in OpenMS. The correcsponding class i€lgamed
ment This class stores the relevant information about an element. The handling of the Elements is done
by the class ElementDB, which is implemented as a singleton. This means there is only one instance of
the class in OpenMS. This is straightforward because the Elements do not change during execution. Data
stored in an Element spans its hame, symbol, atomic weight, and isotope distribution beside others.

const ElementDB* db = ElementDB::getinstance();
Element carbon = *db->getElement("Carbon"); // .getResidue("C") would also be ok

cout << carbon.getName() << " "
<< carbon.getSymbol() << " "
<< carbon.getMonoWeight() << " "
<< carbon.getAverageWeight() << endl;

Elements can be accessed by ElementDBclass. As it is implemented as a singleton, only a pointer
of the singleton can be used, \gatinstance() The example program writes the following output to the
console.

Carbon C 12 12.0107

2.9.2 EmpiricalFormula

The Elements described in the section above can be combined to empirical formulas. Application are the
exact weights of molecules, like peptides and their isotopic distributions. The class supports a large number
of operations like addition and subtraction. A simple example is given in the next few lines of code.

EmpiricalFormula methanol("CH30H"), water("H2Q0");
EmpiricalFormula sum = methanol + water;

cout << sum << " "
<< sum.getNumberOf("Carbon") << " "
<< sum.getAverageWeight() << endl;

Two instances of empirical formula are created. They are summed up, and some information about the new
formula is printed to the terminal. The next lines show how to create and handle a isotopic distribution of
a given formula.

IsotopeDistribution iso_dist = sum.getlsotopeDistribution(3);

for (IsotopeDistribution::Constlterator it = iso_dist.begin(); it != iso_dist.end(); ++it)

{

cout << it->first << " " << it->second << endl;

}

The isotopic distribution can be simply accessed bygigsotopeDistribution(junction. The parameter
of this function describes how many isotopes should be reported. In our case, 3 are enough, as the following
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numbers get very small. On larger molecules, or when one want to have the exact distribution, this number
can be set much higher. The output of the code snipped might look like this.

02CH6 1 50.0571
50 0.98387

51 0.0120698

52 0.00406

2.9.3 Residue

A residue is represented in OpenMS by the clBssidue It provides a container for the amino acids

as well as some functionality. The class is able to provide information such as the isotope distribution
of the residue, the average and monoisotopic weight. The residues can be identified by their full name,
their three letter abbreviation or the single letter abreviation. The residue can also be modified, which is
implemented in the Modification class. Additional less frequently used parameters of a residue like the
gas-phase basicity and pk values are also available.

ResidueDB res_db;
Residue lys = *res_db.getResidue("Lysine"); // .getResidue("K") would also be ok

cout << lys.getName() << " "
<< lys.getThreeLetterCode() << " "
<< lys.getOneLetterCode() << " "
<< lys.getAverageWeight() << endl;

This small example show how to create a instance of ResidueDB were all Residues are stored in. The
amino acids themselves can be accessed via the getResidue function. ResidueDB reads its amino acid and
modification data from data/CHEMISTRY/.

The output of the example would look like this

Lysine LYS K 146.188

2.9.4 AASequence

This class handles the amino acid sequences in OpenMS. A string of amino acid residues can be turned
into a instance oAASequenc® provide some commonly used operations and data. The implementation
supports mathematical operations like addition or subtraction. Also, average and mono isotopic weight and
isotope distributions are accessible.

Weights, formulas and isotope distribution can be calculated depending on the charge state (additional
proton count in case of positive ions) and ion type. Therefore, the class allows for a flexible handling of
amino acid strings.

A very simple example of handling amino acid sequence with AASequence is given in the next few lines.

AASequence seq("DFPIANGER");

AASequence prefix(seq.getPrefix(4));
AASequence suffix(seq.getSuffix(5));

cout << seq << " "
<< prefix << " "
<< suffix << " "
<< seg.getAverageWeight() << endl;
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Not only the prefix, suffix and subsequence accession is supported, but also most of the features of Empir-
icalFormulas and Residues given above. Additionally, a number of predicates like hasSuffix are supported.
The output of the code snippet looks like this.

DFPIANGER DFPI ANGER 1018.08

2.9.5 TheoreticalSpectrumGenerator

This class implements a simple generator which generates tandem MS spectra from a given peptide charge
combination. There are various options which influence the occurring ions and their intensities.

TheoreticalSpectrumGenerator tsg;
PeakSpectrum specl, spec2;
AASequence peptide("DFPIANGER");

tsg.addPeaks(specl, peptide, Residue:Ylon, 1);
tsg.getSpectrum(spec2, peptide, 2);
cout << "Spectrum 1 has " << specl.size() << " peaks. " << endl;

cout << "Spectrum 2 has " << spec2.size() << " peaks. " << endl;

The example shows how to put peaks of a certain type, y-ions in this case, into a spectrum. Spectrum 2 is
filled with a complete spectrum of all peaks (a-, b-, y-ions and losses). The TheoreticalSpectrumGenerator
has many parameters which have a detailed description located in the class documentation. The output of
the program looks like the following two lines.

Spectrum 1 has 8 peaks.
Spectrum 2 has 32 peaks.
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2.10 Visualization

Visualization in OpenMS is based on Qt.

2.10.1 1D view

All types of peak or feature visualization share a common interface. So here only an example how to
visualize a single spectrum is given (Tutorial_Spectrum1D.C).

First we need to create@Applicationin order to be able to use Qt widgets in out application.
Int main(int argc, const char** argv)

QApplication app(argc,const_cast<char**>(argv));

Then we load a DTA file (the first command line argument of our application).

MSExperiment<> exp;
exp.resize(1);
DTAFile().load(argv[1],exp[0]);

Then we create a widget for 1D visualization and hand over the data.

Spectrum1DWidget* widget = new Spectrum1DWidget(Param(),0);
widget->canvas()->addLayer(exp);
widget->show();

Finally we start the application.

return app.exec();
} /lend of main

2.10.2 Visual editing of parameters
Paramobjects are used to set algorithm parameters in OpenMS. In order to be able to visually edit them,
the ParamEditorclass can be used. The following example (Tutorial_ParamEditor.C) show how to use it.

We need to create a QApplication, load the data from a file (e.g. the parameters file of any TOPP tool),
create thd®aramEditorand execute the application:

Int main(int argc, const char** argv)

{

QApplication app(argc,const_cast<char**>(argv));

Param param;
param.load(argv[1]);

ParamEditor* editor = new ParamEditor(0);
editor->load(param);
editor->show();

app.exec();

When it is closed, we store the result back to Haeamobject and then to the file.

editor->store();
param.store(argv[1]);

return O;
} /lend of main
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2.11 HowTo
2.11.1 Creating a new algorithm

Most of the algorithms in OpenMS share the following base classes:

« ProgressLoggeis used to report the progress of the algorithm.

» DefaultParamHandlers used to make the handling of parameters (and their defaults) easy.
In most cases, you will not even need accessors for single parameters.

The interfaces of an algorithm depend on the datastructures it works on. For an algorithm that works on
peak data, a non-template class should be used that provides template methods opekéfiBgmeriment
or MSSpectrunno matter which peak type is used. SwmkPickerCWTor an example.

For algorithms that do not work on peak data, templates should be avoided.
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